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LElTER TO THE EDITOR 

A physical interpretation of the quantum group 4+2q(SU(2)) 

M A Martin-De!gad_oi 
Depanamento de  Fisica Te6rica, Universidad Complutense de  Madrid, Avenida 
Complutense, Madrid 28040, Spain 

Received 26 February 1991 

Abstract. The quantum statistics of a system of free spins in the presence of a con~tant 
magnetic field H is interpreted in terms ofthe representation thearyafthe simplest quantum 
group %JSU(Z)) with q = being the deformation parameter which has a definite 
physical meaning. The classical limit q +  I corresponds to weak magnetic field regimen 
H + O .  

Recently, since the discovery of quantum groups (Hopf algebras [l]) by Drinfeld [2] 
as the natural algebraic setting for the inverse scattering problem, these algebraic 
structures have been shown to be deeply rooted in many problems of physical and 
mathematical interest, such as rational conformal field theories (RCFT) [3-61, exactly 
solvable statistical models [7], inverse scattering theory applied to integrable models 
in quantum field theories [8]: non-commutative geometry [9]: knot theory in three 
dimensions etc. In all these disparate areas of mathematical physics the Yang-Baxter 
equation plays an essential role. 

In this letter, a simple interpretation of the quantum group Q,(SU(2)) is addressed. 
Namely, the effect of a constant magnetic field on a system of non-interacting spins 
localized at certain sites of space can be visualized as a q-deformation of the classical 
algebra SU(2) of angular momentum theory, with the deformation parameter q having 
a definite physical meaning. In this way, the quantum statistics of this system of spins 
can be interpreted in terms of the representation theory of the quantum grou; 
%,(SU(2)). I n  this respect, this application of Q,(SU(2)) should be viewed as a 
‘toy-model’ or as a ‘q-riosity’. 

The quantum Lie algebra QJSU(2)) is a deformation of the universal enveloping 
algebra of SU(2) which is endowed with a Hopf algebra structure. The quantum algebra 
%,(SU(2)) can be characterized by giving its three generators J+, I - ,  J, together with 
the following defining relations based on the Chevalley basis of SU(2): 

[A,  JJ=*J* (1) 

where q is the parameter of the deformation of the classical algebra SU(2). It is a real 
number or it has unit modulus in order to be compatible the adjoint operation 
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( J : = J _ ,  J I = J + )  with the algebra structure (11, (2). As usual, it is convenient to 
introduce q-numbers denoted by [x],: 

The algebra SU(2) is recovered from ( l ) ,  (2) in the limit q +  1. 

tion A, a coinverse y and a co-unit E defined by 

A(J,) = J,O 1 + 1 OJ, 

The Hopf algebra structure of Qq(SU(2)) is given by the existence of a comultiplica- 

E(1)=1 E(J*) = €(Iz) = 0. (7) 
The operation A is an algebra homomorphism. In this letter we are interested in the 
interpretation of A as the analogue of angular momentum composition. When q = 1 it 
turns out 

A ( J ) = J O l + l O J .  (8) 
This comu!tip!i&on (X) also provides a Hopfa!g&ra StnJCture to qs1_1(2)) !?ct while 
this is co-commutative, (4), (5) is not. In this sense Q,(SU(2)) is a non-trivial Hopf 
algebra. 

Because of the resemblance between the algebraic structures of SU(2) and 
Qq(SU(2)), the representation theory of the quantum group is quite similar to the 
classical theory. Several authors [lo, 12, 131 have proved that there exist irreps of 
%,(SU(2)) labelled with j = 0, 5, 1 , .  . .acting on a Hilbert space V’ with basis vectors 

IJm), - j S m S j  ( 9 )  

J,ljm), = mljm), (10) 

as follows 

We readily see from (11) that the usual numbers have tumed into q-numbers. The 
irrep V’ has dimension 2 j + l .  However, it is convenient to introduce the concept of 
q-dimension of the irrep Vj as follows 

dim, V’-[Zj+l],. (12) 

This q-dimension plays a very important role in the representation theory of quantum 
groups when q is a root of unity [5,6]. Moreover, the multiplication of q-dimensions 
satisfies a Clebsch-Gordan rule [5,15]: 

The example comes from the quantum statistical study of paramagnetism. A 
simplified study [ 161 of this phenomenon can be modelled by means of a system of 
spins j localized on certain sites in the space and without interactions among themselves. 
When we say ‘system of spins’ we mean ‘particles’ whose unique defining property is 
its spin, and they have neither other internal structure nor they are moving. Under 
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these circumstances, we can consider that the unique interaction among the spins is 
the coupling of their angular momenta J. Each particle of spin-j in the system is 
associated with an irrep VJ of SU(2). Then the coupling of two particles j , ,  j, with 
angular momenta J , ,  J2 respectively, in order to produce a state j of angular momentum 
J = J ,  +J2 is given by the Clebsch-Gordan decomposition of the tensor product of 
the irreps V’I and V’z: 

(i4j 

that we can graphically represent as the interaction diagram of figure 1. 
Now let us introduce in the system of spins a constant magnetic field H in the z 

axis direction. We know that the magnetic moments p of each particle tend to be 
oriented in the direction of the applied magnetic field. But what we want to know is 
how the coupling rule of angular momenta has been modified by the presence of the 
magnetic field H. 

Figure 1. Interacting diagram for angular momentum coupling (Clebseh-Gardan 
decomposition). 

In order to interpret the new situation it is convenient to remember the computation 
of the partition function 3, of the whole system. This quantity encodes all the physical 
information ofthe system. First let us begin with the partition function z, of one-particle 
states in the canonical ensemble: 

+; 

m-- ;  
( 1 5 )  

where /3 = 1 J k, T and E, is the potential energy of the interaction of a magnetic dipole 
with moment p with the magnetic field H: 

Em’-” ... U /,Cl 

2 e-P%, 
m 

F O P  1.. \ ’“I  

The magnetic moment is proportional to the angular momenta of the particles? 

e 
2m, 

p = g - J  

where g is the Land6 factor that equals 2 in this case. Then 

E, = -2p,pL.mH (18) 

t We will assume that the panicles of spin-j we arc considering have mass me and charge e. 
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with p s =  efi/2m, the Bohr magneton. Substituting (18) in (15) we obtain a geometric 
series whose result can be written in the following way: 

2 j t l  - -(,’+,I 

(19) 

q = (LcopB/ebT) (20) 

4 4 
2, = 

4 - 9 - ’  
with 

a real number. The partition function z,,, can be interpreted in terms of the q-dimension 
of the irrep V’ of QJSU(2)) introduced in (12): 

z,,, = [ 2 j +  13, =dim, V’. (21) 
Alternatively, we can arrive at this result within the theory ofquantum groups computing 
the q-dimension of the irrep V’ as a trace of the operator q2’= over the space of states 

dim,, V’ = tr 4,’. (22) 
then, dimsV’=Z~=.’I,(jmlq2J=ljm)q=[2j+l]qr(h=1) which is the same result 
obtained for the partition function z, if we again identify q as in (20). 

Then it is reasonable to interpret that the effect of introducing the magnetic field 
H in the system of spins has been to deformate the algebra of SU(2) to Q,(SU(2)) 
with a deformation parameter given by (20). In this way the particles of spin-j transforms 
now with the representation V’ of Q,(SU(2)). We observe from (20) that in the limit 
when the magnetic field disappears ( H - t O )  the parameter of the deformation tends 
to 1 (q+  1). In this way the algebra and representations of SU(2) are recovered. Let 
us recall that the limit of weak magnetic fields$ corresponds to the classical theory of 
paramagnetism (Curie regimen). 

Lei us go now io consider ihe ioiai pariiiion r’unciion S,,, of  ihe  sysiem of spins. 
First let us compute it as usual in statistical physics. As the particles of spin-j do not 
interact with each other and are localized at definite sites of space, we can apply the 
Maxwell-Boltzmann statistics as a good approximation [16]. Then 

(23) 
Again we can amve at the same result within representation theory of Qu,(SU(2)) with 
the interpretation mentioned above. In this context, the system composed of several 
spins is represented by the tensor product of the corresponding irreps Vj associated 
with each particle of spin-j. Therefore, let us denote by j,, j,, . . . , jN the spins of the 
N particles, all of them equal to j but we shall suppose they are arbitrary for the 
moment. We begin adding to the system of only one particle j, , with partition function 
given by (21), another particle of spin j,. This system is represented by V’lO V’Z. The 
total spin k, (see’figure 2(a))  can take values from k,  = lj, -j,l to k, = j, +j2, as follows 
from the Clebsch-Gordan decomposition associated with (14). The partition function 
of the compound system is obtained adding all the contributions of the configurations 
Vk’ coming from the angular momenta decomposition: 

N z,,,=r,. 

t In fact, the q-dimension of VJ is a particular case of a Markov trace defined over the Hecke algebras 
constructed from the quantum group [61. 
% O r  low temperature as well. 
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.i j,+[ 1.1- jl+l ..... i”; 
Jl 

k1 k2 kN.1 

a) b) C) 

Figure 2. Interacting diagrams for coupling of 2, 3 , .  . . , N angular momenta. 

Using now the Clebsch-Gordan property of the q-dimensions (13) it turns out that 
the total partition function %,,, for the system of two spins is factorized: 

zm = [2jl+11,C2jz+ ]Iq (25)  
.. - . l i  ,-. .,i 
NOW we add a ihird particie j 3  to ihe system that wiii be represenied by +# v V J ~ W  V’J 

(see figure 2 ( b ) ) .  Again to compute Zm we sum all the contributions coming from the 
partition functions associated to all the possible couplings of three spins: 

i ,+J2 kZ+& 

kj=li,-j21 k2=lk,-J3I 
%,= Z C ~ ~ ~ z + 1 1 , = ~ ~ j , + ~ l , ~ ~ j ~ + ~ l , ~ ~ ~ 3 + ~ l ,  (26) 

where we have used again the property ( 1 3 )  to  obtain the sum over all the possible 
contributions. The total partition function Z,,, of a system of N spins Vi!@ V’zO.. .@ 
V’N is now readily generalized and it results: 

= [& + 1 j$jZ + ! j q  ~ : : [2& + 1 j,. (27) 

Recalling that all the spins have the same value j ,  equation (27) reduces to (23) as 
desired. 

The total partition function can be also expressed by means of a trace. Let V&, 
denote the tensor product of N copies of the irreps VJ representing the total system. 
Then, it can be readily seen that 

.. 
sm = tr(q’’z 0. . .@ q’”) “bN (28) 

has the same value as the one given by (27). 
Let us notice that when angular momenta are coupled in the presence of a magnetic 

field, the couplings are carried out by 2 x 2 spins in such a way that to arrive the final 
configuration several options can be chosen. For instance, let us consider the coupling 
of three particles V’nO V’@ VJl as in figure 2(b ) .  There are two possibilities to cluster 
the three spins. One is related to the configuration (Vi@ V’2)O V’ (see figure 3(a) )  
and the other one to V’l@( V’@ V’.) (figure 3 ( b ) ) .  Both descriptions of the coupling 
of three particles are physically equivalent. In fact, if we denote by e$j(j,j21j3) an 
orthonormal basis in V’l@ V’@ VJ3 associated with the scheme of figure , ( a )  and 
e$’(j, Ij&) the one associated with the scheme of figure 3 ( b ) ,  we know from ordinary 
angular momentum theory that both bases are equivalent to each other and they are 
related by the q-analogue of 6j-symbols {I’ j :  !z] . 

I3 J J23  
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J Z  

As far as the total partition function is concerned, both coupling configurations of 
j,, j2, j, must be physically equivalent. In fact, their partition functions %!,!21 and %231 
are identical: 

as can be readily proved using relation (13) in order to verify that both equal Zm = 
[2jl + 114[2j2+ 1],[2j,+ 11, as in (25). 

From the quantum group aq(SU(2)) point of view what we are checking is the 
co-associativity property of the comultiplication A (4), ( 5 )  (or coupling rule of spins 
in the presence of a magnetic field in our case): 

( i d O A ) ~ A = ( A O i d ) ~ A .  (31) 

This relation is defined over the triple tensor product d@d0d with d = q,(SU(2)). 
In this way we see the quantum group structure through the representation theory 
interpretation of the quantum statistics for the system of spins in the magnetic field. 
Furthermore, it is well known that classical 6j-symbols satisfy certain relations among 
themselves. One of them is the Biedenharn-Elliot identity [12] whose q-analogue reads 
as follows: 

This is known as the pentagonal equation in rational conformal field theories (RCFT) 

[3] where the q6j-symbols are interpreted as duality matrices for conformal blocks 
[SI. In the representation theory of quantum groups this is a translation of the defining 
relation of a quantum group [8]: 

T, T 2 9  = BT2T, ( 3 3 )  

where 91 is the universal %matrix and T, = T 0 1 ,  T 2 =  1 0  T with T denoting the 
generators of the quantum group. The universal %-matrix is defined as the following 
endomorphism on the tensor product d0d: 
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where u : d @ d + d @ d  is the permutation map u ( a , @ a 2 ) =  a 2 0 a ,  and it turns out 
that A'= U .  A is another comultiplication in the same algebra with antipode y '=  y- ' .  
When the %-matrix exists the Hopf algebra SP becomes a quasitriangular Yang-Baxter 
algebra. This is because the compatibility condition for (34) to hold is the quantum 
Yang-Baxter equation (QYBE) [SI: 

% 3 2 % ) 3 % 2 3 =  B 2 3 % 1 3 % t 2 .  (35) 
The existence of the %-matrix has a simple meaning in the scheme of the interacting 
spins with the magnetic field. It I s  the statement that the representations Vj18 Vj2 and 
VJ@ VJl are equivalent, with the equivalence given by the %-matrix as in (34), that 
is, it is the physical requirement of interchangeability in the composition of physical 
systems. 

It is remarkable to notice that the QYBE is reflected in the representation theory of 
Qq(SU(2)) by means of the so-called hexagonal equation in RCFT [3-5] which is the 
ioiiowing q-anaiogue of a ciassicai identity [ i S j  satisfied by the 6j-symbois [ i i j :  

withc,=j(j+ I) ,  c , = a ( a + l ) ,  . . . theclassicalCasimireigenvalues.Thereisagraphical 
representation of equation (36) which is the Reidermeister 3rd movement [12]. 

I would like to thank L A Ibort, L Martinez, J Ramirez Mittelbrunn and G Sierra for 
useful discussions on quantum groups and related topics. 
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